纳米颗粒的作用( 二 )


用纳米微粒作催化剂提高反应效率、优化反应路径、提高反应速度方面的研究,是未来催化科学不可忽视的重要研究课题,很可能给催化在工业上的应用带来革命性的变革 。
2、在生物医学中应用 从蛋白质、DNA、RNA到病毒,都在1-100nm的尺度范围,从而纳米结构也是生命现象中基本的东西 。细胞中的细胞器和其它的结构单元都是执行某种功能的“纳米机械”,细胞就象一个个“纳米车间”,植物中的光合作用等都是“纳米工厂”的典型例子 。遗传基因序列的自组装排列做到了原子级的结构精确,神经系统的信息传递和反馈等都是纳米科技的完美典范 。
生物合成和生物过程已成为启发和制造新的纳米结构的源泉,研究人员正效法生物特性来实现技术上的纳米级控制和操纵 。纳米微粒的尺寸常常比生物体内的细胞、红血球还要小,这就为医学研究提供了新的契机 。目前已得到较好应用的实例有:利用纳米SiO2微粒实现细胞分离的技术,纳米微粒,特别是纳米金(Au)粒子的细胞内部染色,表面包覆磁性纳米微粒的新型药物或抗体进行局部定向治疗等 。
正在研制的生物芯片包括细胞芯片、蛋白质芯片(生物分子芯片)和基因芯片(即DNA芯片)等,都具有集成、并行和快速检测的优点,已成为纳米生物工程的前沿科技 。将直接应用于临床诊断,药物开发和人类遗传诊断 。植入人体后可使人们随时随地都可享受医疗,而且可在动态检测中发现疾病的先兆信息,使早期诊断和预防成为可能 。
纳米生物材料也可以分为两类,一类是适合于生物体内的纳米材料,如各式纳米传感器,用于疾病的早期诊断、监测和治疗 。各式纳米机械系统可以快速地辨别病区所在,并定向地将药物注入病区而不伤害正常的组织或清除心脑血管中的血栓、脂肪沉积物,甚至可以用其吞噬病毒,杀死癌细胞 。
另一类是利用生物分子的活性而研制的纳米材料,它们可以不被用于生物体,而被用于其它纳米技术或微制造 。
3、在其它精细化工方面的应用 精细化工是一个巨大的工业领域,产品数量繁多,用途广泛,并且影响到人类生活的方方面面 。纳米材料的优越性无疑也会给精细化工带来福音,并显示它的独特畦力 。在橡胶、塑料、涂料等精细化工领域,纳米材料都能发挥重要作用 。如在橡胶中加入纳米SiO2,可以提高橡胶的抗紫外辐射和红外反射能力 。
纳米Al2O3,和SiO2,加入到普通橡胶中,可以提高橡胶的耐磨性和介电特性,而且弹性也明显优于用白炭黑作填料的橡胶 。塑料中添加一定的纳米材料,可以提高塑料的强度和韧性,而且致密性和防水性也相应提高 。国外已将纳米SiO2,作为添加剂加入到密封胶和粘合剂中,使其密封性和粘合性都大为提高 。此外,纳米材料在纤维改性、有机玻璃制造方面也都有很好的应用 。
在有机玻璃中加入经过表面修饰处理的SiO2,可使有机玻璃抗紫外线辐射而达到抗老化的目的;而加入A12O3,不仅不影响玻璃的透明度,而且还会提高玻璃的高温冲击韧性 。
一定粒度的锐钛矿型TiO2具有优良的紫外线屏蔽性能,而且质地细腻,无毒无臭,添加在化妆品中,可使化妆品的性能得到提高 。超细TiO2的应用还可扩展到涂料、塑料、人造纤维等行业 。最近又开发了用于食品包装的TiO2及高档汽车面漆用的珠光钛白 。纳米TiO2,能够强烈吸收太阳光中的紫外线,产生很强的光化学活性,可以用光催化降解工业废水中的有机污染物,具有除净度高,无二次污染,适用性广泛等优点,在环保水处理中有着很好的应用前景 。