sparkkafka 史上最全的kafka知识解析


sparkkafka 史上最全的kafka知识解析

文章插图
针对不同的Spark、Kafka版本,集成处理数据的方式分为两种:Receiver based Approach和Direct Approach,不同集成版本处理方式的支持,可参考下图:
sparkkafka 史上最全的kafka知识解析

文章插图
【sparkkafka 史上最全的kafka知识解析】Receiver based Approach
基于receiver的方式是使用kafka消费者高阶API实现的 。
对于所有的receiver,它通过kafka接收的数据会被存储于spark的executors上,底层是写入BlockManager中,默认200ms生成一个block(通过配置参数spark.streaming.blockInterval决定) 。然后由spark streaming提交的job构建BlockRdd,最终以spark core任务的形式运行 。
关于receiver方式,有以下几点需要注意:
receiver作为一个常驻线程调度到executor上运行,占用一个cpureceiver个数由KafkaUtils.createStream调用次数决定,一次一个receiverkafka中的topic分区并不能关联产生在spark streaming中的rdd分区增加在KafkaUtils.createStream()中的指定的topic分区数,仅仅增加了单个receiver消费的topic的线程数,它不会增加处理数据中的并行的spark的数量【topicMap[topic,num_threads]map的value对应的数值是每个topic对应的消费线程数】receiver默认200ms生成一个block,建议根据数据量大小调整block生成周期 。receiver接收的数据会放入到BlockManager,每个executor都会有一个BlockManager实例,由于数据本地性,那些存在receiver的executor会被调度执行更多的task,就会导致某些executor比较空闲
建议通过参数spark.locality.wait调整数据本地性 。该参数设置的不合理,比如设置为10而任务2s就处理结束,就会导致越来越多的任务调度到数据存在的executor上执行,导致任务执行缓慢甚至失败(要和数据倾斜区分开)
多个kafka输入的DStreams可以使用不同的groups、topics创建,使用多个receivers接收处理数据
两种receiver可靠的receiver:
可靠的receiver在接收到数据并通过复制机制存储在spark中时准确的向可靠的数据源发送ack确认不可靠的receiver:不可靠的receiver不会向数据源发送数据已接收确认 。这适用于用于不支持ack的数据源当然,我们也可以自定义receiver 。receiver处理数据可靠性默认情况下,receiver是可能丢失数据的 。可以通过设置spark.streaming.receiver.writeAheadLog.enable为true开启预写日志机制,将数据先写入一个可靠地分布式文件系统如hdfs,确保数据不丢失,但会失去一定性能
限制消费者消费的最大速率涉及三个参数:
spark.streaming.backpressure.enabled:默认是false,设置为true,就开启了背压机制;spark.streaming.backpressure.initialRate:默认没设置初始消费速率,第一次启动时每个receiver接收数据的最大值;spark.streaming.receiver.maxRate:默认值没设置,每个receiver接收数据的最大速率(每秒记录数) 。每个流每秒最多将消费此数量的记录,将此配置设置为0或负数将不会对最大速率进行限制
在产生job时,会将当前job有效范围内的所有block组成一个BlockRDD,一个block对应一个分区
kafka082版本消费者高阶API中,有分组的概念,建议使消费者组内的线程数(消费者个数)和kafka分区数保持一致 。如果多于分区数,会有部分消费者处于空闲状态
Direct Approach
direct approach是spark streaming不使用receiver集成kafka的方式,一般在企业生产环境中使用较多 。相较于receiver,有以下特点:
1.不使用receiver
不需要创建多个kafka streams并聚合它们
减少不必要的CPU占用
减少了receiver接收数据写入BlockManager,然后运行时再通过blockId、网络传输、磁盘读取等来获取数据的整个过程,提升了效率