连续有界一定一致收敛吗 收敛连续有界的关系

【连续有界一定一致收敛吗 收敛连续有界的关系】

连续有界一定一致收敛吗 收敛连续有界的关系

文章插图
文章插图
可微一定可导 , 可导一定连续 。在二元函数中可微能够推出偏导数存在 , 但偏导数存在不能推出可微 。收敛可以推出有界 , 但有界不能推出收敛 , 必须是单调有界函数才收敛 。总之 , 有界不一定收敛 , 收敛一定有界 。单调有界连续函数一定收敛 , 单调函数不一定连续 , 也不一定有界 。
补充:
收敛函数:若函数在定义域的每一点都收敛 , 则通常称函数是收敛的 。函数在某点收敛 , 是指当自变量趋向这一点时 , 其函数值的极限就等于函数在该点的值 。
有界函数:对于定义域中的任意一个值 , 相应的函数值都在一个区间内变化